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Abstract

A key assumption to prove the so-called “Fundamental Theorem of Finance” is the
possibility of short selling the risky assets of the market. These negative portfolio posi-
tions cause some conceptual difficulties to students in their first contact with quantitative
finance, especially if they have no background in business. Unfortunately, neglecting lia-
bilities in the risky assets usually complicates the presentation of no-arbitrage conditions
for elementary market models. We show a simple geometric condition to handle the ar-
bitrage conditions when short selling is not possible. Moreover, this approach provides
a pedagogical tool to visualize the consistency of the model when shorting is allowed for
some assets and not for others. Some typical examples are presented, both in analytical
and graphical ways.

1 Introduction

1.1 Arbitrage Without Short Selling

The Fundamental Theorem of Finance provides the equivalence between the no-arbitrage
condition (briefly, the one that states that we cannot make money without assuming risks) and
the existence of a so-called risk neutral measure. A very important assumption to prove this
theorem is the availability of short selling the assets in the market. In brief, this allows having
negative units of an asset, and therefore portfolio positions are identified with real numbers.
Under this assumption, elegant proofs of this theorem are provided in the textbooks for simple
market models (see, for instance, [1]). The precise conditions of no arbitrage without short
selling are usually not covered in elementary courses. Why should we avoid short positions
as a basic hypotheses? On the one hand, we believe that short selling could be a confusing
concept for newcomers in quantitative finance. In fact, we will show some examples where
intuition contradicts the precise definition of arbitrage. On the other hand, for simple models
the characterization of no arbitrage opportunities can also be obtained with elementary tools,
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even if short selling is forbidden. As we will see, there is no reason to believe that the proof
is much more involved that the one of the classical “Fundamental Theorem”. For the sake
of clarity, in what follows we will call “Arbitrage Theorem” to any mathematical statement
providing precise conditions equivalent to no-arbitrage opportunities in a market model.

Understanding negative positions in a portfolio requires an extra effort if one is not used
to business practice. It is easy to identify a negative bank account position (with loans or
borrowing money), but it is rather difficult to explain the intuitive aspects of owning minus
one unit of stock. Not all the textbooks pay proper attention to this difficulty. For instance,
in Björk’s book ([1], page 6), a negative position is identified with the sale of the asset. This
interpretation involves only part of the concept: If I sell a stock that I do own, I will have
a positive amount of money in my portfolio, but no liabilities in the stock. The essential
aspect of short selling is the fact that I am able to sell an asset without actually owning it,
introducing a positive position in the bank account and a negative in the stock, due to the
acquired liabilities. Selling a stock that we do not own is something hard to digest for a
layman, and it is of course a very strange statement!

In practice, the process of short selling is supplemented by certain restrictions. As explained in
Luenberger’s book ([4], Chapter 6): “short selling is considered quite risky by many investors
because of the unlimited potential loss”. For this reason, short selling is purposely avoided
as a policy by many institutions. Luenberger also mentions that the mere definition of a rate
of return associated with the idealized shorting is “a bit strange”, because there is no initial
commitment of resources.

John Hull, in his classical textbook (see [3]), devotes the whole section 5.1 to the concept of
short selling. Using also the slogan of “selling something that we do not own”, he remarks
that (short selling) is something that is possible for some -but not all- investment assets. In
the same chapter, while finding the forward price of an asset, Hull makes an effort to answer
an important question: What if Short Sales are Not Possible? (page 104, Sect. 5.4). In
this case, the typical valuation procedure cannot be carried out. He then suggests another
interesting way to find the correct forward price, assuming that there is at least one investor
that holds the asset as an investment. He shows that, if the forward price were below the
correct value, any investor possessing the underlying asset may follow a simple strategy: 1)
enter the forward, sell the underlying, put the money in the bank; 2) at maturity, use the
forward to buy the asset and keep the difference. Eventually, the investor would have, for
every possible market scenario, the original asset plus some positive amount of money. It
seems reasonable to identify this situation with an arbitrage opportunity, but this is again
only part of the truth. Under the standard definition, an arbitrage opportunity is a strategy
that allows an investor to start with no money at all and end up with a positive amount for
some future scenario, with no risk of losses. In Hull’s example, if the forward mispricing does
not compensate the possible fall of the asset price, our portfolio (asset + forward contract)
does not fulfill the conditions for an arbitrage opportunity. If the initial price of the asset is
much higher than the price at maturity, there is no guarantee that the investor will end with a
portfolio of a greater value. Of course, Hull’s example captures some kind of arbitrage that is
not included in the standard definition, but contributes to the confusion of the reader.

When shorting is not possible, the no-arbitrage (or consistency) condition of a market model is
seldom considered in basic texts. An exception being Buchanan’s book (see [2]) who presents
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the Fundamental Theorem in the language of wagers, avoiding negative bet positions. In
other words: gamblers cannot play the role of the bookmaker, they can only buy bets but
they are not allowed to make them. In this book, the problem is written in terms of the duality
theory of linear programming and then related to an optimization problem. Unfortunately,
the theorem stated on page 86 therein (the existence of the risk neutral probability) is not
actually true if short selling is prohibited.

Recently, in his Phd thesis, S. Pulido studied the Fundamental Theorem of Asset Pricing under
short sales prohibitions in the abstract setting of continuous-time financial models (see [6] and
references therein). What he actually shows is that the following sets are the same:

A) The set of measures under which the values of admissible portfolios are supermartingales.

B) The set of the measures under which the prices of the assets that cannot be shorted are
supermartingales and the prices of assets that can be sold short are local martingales.

This recovers the classical result as a particular case.

If shorting is forbidden, the existence of a risk-neutral probability measure can still be proved,
even though the expected value of the discounted future prices is not necessarily equal to the
prices seen today. Instead, to avoid arbitrage, they must satisfy an inequality condition.

1.2 Objectives and Outline

In this article, our main purpose is to show a simple geometric condition of no arbitrage when
short selling is not allowed. On a basic level, the proof is only a bit more involved than the one
of the classical Fundamental Theorem, because we have to deal with nonnegative solutions to
systems of inequalities. Nevertheless, this approach has at least two pedagogic advantages:
1) There is no need to introduce the concept of short selling from the outset, 2) Portfolios
with non-negative positions on the risky assets are more natural to deal with, at least in the
first approach to the subject.

The paper is organized as follows. In the next section, we define a simple market model
without using probabilities. Risk is identified with the availability of several future market
scenarios. We consider also two classical examples: 1) The binomial model, where the lack
of a risk neutral measure (with the usual properties) is evident if both short selling and
arbitrage opportunities are forbidden and 2) The case of wagers, where we can easily identify
the no-arbitrage conditions without recourse to the general theory of inequalities. In the
following sections, we state the general result and show graphical examples, exploring the
consequences when shorting is allowed only for certain assets. This provides a more general
view of the classical Fundamental Theorem of Finance, which can be recovered once short
selling is allowed in every risky asset. For completeness, we provide an elementary proof of
the main theorem in the Appendix.
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2 Market Assumptions

Our market model M consists of n assets with positive prices X1, X2, . . . , Xn. An investor
may buy some non-negative units u1, u2, . . . , un of each asset to form his own portfolio or
investment strategy. Decisions are taken at time t = 0 and the portfolio value is computed at
a future time T . The units uj ≥ 0 are held fixed during the interval [0, T ]. The initial asset
prices are known, given by xj := Xj(0) but their future values depend on the market scenario.
To formalize this statement, we assume that the market can reach m possible states at time
T . The positive numbers Xij are the prices of the jth asset in the ith market scenario. With
these assumptions, the value of this strategy at time T in the ith market scenario is given
by:

Vi :=
n∑
j=1

ujXij (1)

while the initial value is given by:

v :=

n∑
j=1

ujxj (2)

We introduce also a special asset, the bank account X0, with the following values:

X0(0) = 1 , X0(T ) = 1 + r0 . (3)

The bank account has the following features: 1) Its future value is deterministic, that is,
independent of the market scenarios, 2) We can hold negative units of X0 , corresponding to
a loan. The value of the debt increases in absolute value in the same amount as a deposit.
The return r0 is the so-called risk free interest corresponding to the interval [0, T ] and is fixed
(and known) at time t = 0.

2.1 First Example: The Binomial Model with One Risky Asset

Let us consider the classical binomial model with no shorting in one risky asset denoted by
X. We have only two future market scenarios, so we simplify a bit the notation denoting the
future states by + and -. The values of X at the end of the interval are given by:

X(T ) =

{
X+

X−
(4)

Without loss of generality we assume that X− < X+ to ensure that we have at least one risky
asset. Absence of arbitrage means that it is not possible to select a portfolio

V = u0X0 + uX , u > 0 (5)

such that 1) V (0) = 0, 2) V (T ) ≥ 0 for every future scenario and 3) V (T ) > 0 for at least one
scenario. The first condition implies that:

u0 = −uX(0) . (6)
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That means that we are necessarily short in the bank account. The second condition implies
that

u0(1 + r0) + uX(T ) ≥ 0

and taking (6) into account we have, for this arbitrage opportunity:

X0 ≤
X±

1 + r0
. (7)

If (7) is satisfied, the third condition is guaranteed by the assumption X− < X+. The
alternative to (7) yields the no-arbitrage condition for this simple model:

X(0) >
X−

1 + r0
. (8)

That is, the initial price must be greater to at least one of the discounted future prices.
If X0 > X+/(1 + r0) is also valid, then it is clearly not possible to write X0 as a convex
combination of X−/(1+r0) and X+/(1+r0). In other words, the existence of the risk neutral
measure is not guaranteed when short selling of the risky asset is forbidden. Of course, we
may rule out this possibility by imposing a “preference condition”: nobody would buy a risky
asset that offers a return lower than the risk free interest for every future scenario. Even if
this is a natural condition to add to this simple model, it is not enough to guarantee the
existence of the risk neutral measure for markets with more than one risky asset.

2.2 Second Example: Wagers

Wagers provide a nice example of a very special market where the assets behave like the
so-called Arrow-Debreu prices. For this case we take r0 = 0, that is, there is no interest in
the bank account. Consider a game with n possible outcomes. A unit bet on the outcome j
for j = 1 . . . n has the following pay-off:

for t = 0 : Xj = 1 ,

for t = T : Xj in scenario i = Xij :=

{
Rj when outcome j wins, ie. i = j

0 in other case.
(9)

The amount Rj being the total reward (including the initial unit payment) received when j
wins. If we are not allowed to sell wagers (that we did not buy), we may assume that we have
some initial money or that we are able to ask for a loan. A betting strategy of n non-negative
numbers u1, . . . , un is an arbitrage opportunity if:

n∑
j=1

uj > 0,
n∑
j=1

ujXij ≥
n∑
j=1

uj for all i = 1 : n . (10)

and
n∑
j=1

ujXij >

n∑
j=1

uj for at least one i = 1 : n . (11)
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The special form of the market prices (9) gives the condition for an arbitrage opportu-
nity:

uiRi ≥
n∑
j=1

uj , (12)

with strict inequality for at least one i. Dividing by
∑n

j=1 uj (we assumed that we are betting
some positive amount of money) we obtain:

πiRi ≥ 1

(
πi :=

ui∑n
j=1 uj

)
(13)

for some probability vector π := (π1, . . . , πn), that is:

n∑
i=1

πi = 1 . (14)

Taking into account (13) (with strict inequality for one i) and (14) we obtain the following
consequence for the existence of an arbitrage opportunity:

n∑
i=1

1

Ri
< 1 . (15)

Then, we proved that there could be no arbitrage opportunities if the rewards satisfy the
inequality:

n∑
i=1

1

Ri
≥ 1 . (16)

On the other hand, it is also possible to prove that if (16) is not valid we can find an arbitrage
opportunity that wins with every outcome. Let us assume that (15) holds and we have a unit
amount of money to distribute among the different outcomes. Define:

ε := 1−
n∑
i=1

1

Ri
, (17)

and take the betting strategy:

ui =
1

Ri
+
ε

n
(18)

Then the total bet sums 1 and:

uiRi = 1 +
εRi
n

> 1 =

n∑
j=1

uj . (19)

This is the arbitrage condition given by (12), with strict inequality. We will also obtain this
simple result, together with a geometric interpretation, as a consequence of the more general
setting given in the next section.
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3 Arbitrage Theorem Without Shorting: A more General Case

We look for conditions that guarantee the absence of arbitrage in a market with no shorting of
the risky assets. Let us assume that this opportunity exists in the context defined in Section
2. In that case, we would be able to obtain a loan of, say, C > 0 units of money and buy a
portfolio such that its value in every future scenario will be not less than the bank deposit
of the initial price, and will be strictly higher for at least one of them. We give the general
definition that includes the short selling case.

Definition: An arbitrage opportunity is an investment strategy defined by the units uj ∈ R
for j = 0, . . . , n, such that:

n∑
j=1

ujxj = 0 ,
n∑
j=1

ujXij ≥ 0 ∀i = 1 : m, (20)

with
n∑
j=1

ujXkj > 0 (21)

for at least one scenario k. Notice that Xi0 = u0(1 + r0) for all i = 1 : m . When short selling
is not allowed, we have uj ≥ 0 for every j ≥ 1, u0 being always negative. In this case, its
absolute value corresponds to the borrowed quantity C

The main result is the following:

Theorem (Arbitrage Theorem without short selling). Assume that the market model M,
with m future scenarios, does not allow for short selling of the risky assets. Then, the model
has no arbitrage opportunities if and only if there exists a probability vector π := (π1, . . . , πn),
such that the initial prices xj are greater or equal to the discounted expected value of the future
prices in that probability measure:

xj ≥
1

1 + r0

m∑
i=1

πiXij j = 1 : n . (22)

Moreover, if short selling were allowed for some asset Xk then the probability measure can be
taken such that (22) must hold for every asset, and the equality is achieved for that index k:

xk =
1

1 + r0

m∑
i=1

πiXik (23)

The proof is given in the Appendix.

Before considering some graphical examples, we say a word about the “preference condition”
mentioned in the binomial model example. In that case, the fact that no risky portfolio is
allowed to have a lower return than the bank account in every future scenario allowed us to
guarantee the existence of the risk neutral measure. Let us analyze the case with more than
one risky asset in the light of the general result. If we forbid the possibility that one risky
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portfolio had a lower return than the risk free interest in every possible future scenario, we will
have the opposite inequality of the one defining an arbitrage opportunity. Then, as we show
in the Appendix, there must exist a probability vector such as the one in (22), but satisfying
the opposite inequality. This fact does not imply the existence of a risk neutral measure,
because the probability that satisfies (22) (obtained through no arbitrage conditions) and the
probability satisfying the opposite inequality (obtained through “preference conditions”) need
not be the same. We show this case graphically in the following section (see Figure 1c).

3.1 Two Risky Assets

We write the asset prices using two-dimensional vectors (each component being the discounted
price of one of the two assets). The number of vectors depends on the number of future
scenarios of the model:

x = (x1, x2), si =

(
Xi1

1 + r0
,
Xi2

1 + r0

)
. (24)

Notice that x contains the initial prices and si are the rows of the matrix representing the
discounted prices in the different scenarios. The Arbitrage Theorem gives the conditions to
be satisfied by the discounted future prices in order to avoid arbitrage: the vector of initial
prices should be contained in a region such that, for each point inside this region, there exists
a convex combination of future discounted prices with both components below the initial
prices. In other words, consider, for each convex combination of the vectors si, the set of
points (a, b) that have their components above them:

Admissible set =
⋃

π:
∑
πi=1

{
(a, b) ∈ R2 : (a, b) ≥ π1s1 + π2s2

}
(25)

This is the admissible set for the vector of initial prices to avoid arbitrage. In what follows we
consider the graphical interpretation of several cases. In all the figures the gray set indicates
the admissible initial prices for the market model. Models with initial prices outside this set
would have arbitrage opportunities. The points indicating different scenarios are the vectors
si for i = 1, 2 and 3 in some cases.

4 Concluding Remarks

The Arbitrage (or Fundamental) Theorem is a pillar of the modern theory of financial valua-
tion. Its formulation involves the definition of short selling that, as we discussed previously,
may not be an easy concept to handle, and may also lead to some confusing interpretations.
As we have shown in a simple context, an “Arbitrage Theorem” can be easily obtained with-
out recourse to this concept (for a general result cf. [6]). In our opinion, it seems more natural
and pedagogically attractive to consider only non-negative positions on the risky assets, as in
Markowitz’s foundational work in portfolio theory [5]. The definition of short selling may be
postponed, and considered when the concepts of hedging, valuation and replication are intro-
duced. This allows the instructor to focus in the concept of arbitrage, which has a primary
importance in itself.
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To conclude this notes, we suggest a way to approach the definition of short positions without
appealing to a market intermediate or broker. Shorting an asset is equivalent to selling a
derivative contract with the same asset as underlying. The pay-off of this contract is the
value of the asset in every future scenario. If trading this kind of derivatives were allowed in
our market, it would be easy to price them invoking no-arbitrage opportunities. Of course,
the price of the contract turns to be identical to the initial price of the asset, but the seller
does not need to own the underlying to trade it. He must be paid for it at the beginning of the
interval and at maturity he must face the future contract payments, which are equivalent to
buying the underlying asset. With this view, the concept of “shorting an asset” is similar to
the one of issuing a bond, where the asset being “shorted” is money. Bonds allow any investor
to play the role of a bank account, guaranteeing the deposit to the owner of the money. In
a similar way, short selling allows any investor to issue a contract that, instead of paying a
fixed amount of money in future time, it pays the market price of the traded asset.
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Appendix

With the notation introduced in Section 3, we define the following matrix:

A = {aij}i=1:m,j=1:n aij =
Xij

1 + r0
− xj (26)

given by the difference between the discounted future prices and the initial prices for all
assets in every possible scenario. For brevity, we use also the typical notation of Linear
Programming:
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a) v 5 w means vk 5 wk for all k.

b) v ≤ w means v 5 w, and vj < wj for some j.

We define also the vectors:
cj := (a1j , . . . , amj)

′ , (27)

with the columns of the matrix, and ′ means transpose. We collect also the units defining the
portfolio in a single column vector:

u := (u1, . . . , un)′ . (28)

If short selling is not allowed, we must have u = 0.

In this setting, an arbitrage opportunity in a market without short selling is an investment
strategy defined by a vector u ≥ 0 with as many components as the number of risky assets,
such that:

Au = 0 (29)

That is, at least one of its components must be greater than zero.

We use now the basic theory of inequalities from Strang’s book ([7]). Inequality (29) can
be transformed into an equation by means of the so-called slack variables. Consider an m-
dimensional vector w ≥ 0 such that:

Au−w = 0 . (30)

Now, we can pose the problem as follows: an arbitrage opportunity is given by an n + m
dimensional vector [u,w] such that u ≥ 0, w ≥ 0 and:

[A −I]

[
u
w

]
= 0 . (31)

The existence of an arbitrage opportunity implies that, for some ε > 0 , 0 belongs to a closed
convex set Cε ⊂ Rm generated by the columns cj and by the canonical vectors ej for j = 1 : n
and k = 1 : m. Precisely:

Cε :=

x ∈ Rm : x =

n∑
j=1

λjcj −
m∑
k=1

µkek , for λ,µ = 0 ,

m∑
k=1

µk = ε

 . (32)

No arbitrage opportunities mean that 0 is outside C := ∪ε>0Cε. So, for each ε > 0, we have
that 0 does not belong to Cε, which is a closed and convex set. Therefore, we can apply the
theorem of the separating hyperplane in the following terms:

If C ⊂ Rm is a non-empty closed convex set, then: 0 /∈ C if and only if there exists
y ∈ Rm with 〈x,y〉 > 0 for all x ∈ C.

Here 〈·, ·〉 is the scalar product in m-dimensional Euclidean space. If we apply the theorem
to each convex set given in (32) we obtain, for each ε > 0, a vector yε that without loss of
generality can be picked with ‖yε‖ = 1, and such that:

〈x,yε〉 > 0 for all x ∈ Cε . (33)
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By compactness of the unit ball in m dimensional space, we prove that absence of arbitrage
implies the existence of an m-dimensional vector y 6= 0, such that:

〈x,y〉 > 0 for all x ∈ C . (34)

Now, let us assume that (34) holds and show that arbitrage opportunities are not possible.
If such an opportunity existed, then 0 would belong to some Cε for ε > 0. Notice that (34)
implies that:

〈cj ,y〉 ≥ 0 for j = 1 : n , 〈ek,y〉 ≥ 0 for k = 1 : m. (35)

So, if arbitrage exists, we can find λ = 0 and µ = 0 with
∑m

k=1 µk ≥ ε such that:

n∑
j=1

λjcj −
m∑
k=1

µkek = 0 (36)

and then, taking the scalar product with y:

n∑
j=1

λj〈cj ,y〉 −
m∑
k=1

µk〈ek,y〉 = 0 . (37)

At least one of the µk must be different from zero. If we take the value of this component a
little lower, in such a way that 0 < ε′ =

∑m
k=1 µ

′
k, then we would have found an x ∈ Cε′ , such

that:
〈x,y〉 < 0 (38)

contradicting (34).

Absence of arbitrage is therefore equivalent to the existence of a vector y 6= 0 satisfying (34).
The second group of inequalities in (35) implies that y 5 0, while the first group (cf. also
(26-27)) implies that, for each j = 1 : n

m∑
i=1

(
Xij

1 + r0
− xj

)
yi ≥ 0⇒

m∑
i=1

Xij

1 + r0
yi ≥ xj

(
m∑
i=1

yi

)
(39)

Taking into account that
∑m

i=1 yi < 0, we obtain:

xj ≥
1

1 + r0

m∑
i=1

Xij
yi∑m
i=1 yi

(40)

Now, the vector with components

πi :=
yi∑m
i=1 yi

(41)

satisfies:

π ≥ 0 ,
m∑
i=1

πi = 1 . (42)

So far, we proved the following result:

11



The market model M with no short selling does not have arbitrage opportunities if and only
if there exists an m-dimensional probability vector π such that:

x ≥ 1

1 + r0

m∑
i=1

πisi , (43)

where x is an n-dimensional vector containing the initial prices of the n risky assets, and si are
the discounted n-dimensional price vectors in each market scenario i, for 1 ≤ i ≤ m.

Now, let us assume that short selling is allowed for some asset k. In that case, the geometrical
condition is exactly the same but we must take bigger sets in (32). Let λk be any real number
in (32) (not only non-negative), keeping the rest of conditions unchanged. No arbitrage still
means that the null vector does not belong to the union of the bigger sets, and we can follow
exactly the same proof as above. From (34) we obtain the following inequality for the index
k:

λk〈cj ,y〉 ≥ 0 λk ∈ R (44)

which easily leads to the identity (cf. (40)):

〈ck,y〉 = 0⇒ xk =
1

1 + r0

m∑
i=1

πiXik . (45)

In other words, the equality is attained for every asset that can be shorted. If the market
allows short selling for all the assets, we recover the Fundamental Theorem of Finance, that
is: There exists a probability vector π such that the initial prices are the discounted expected
values of the future prices:

x =
1

1 + r0

m∑
i=1

πisi . (46)
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Price 1

Price 2
Scenario1

Scenario 2

Admissible set

(a) Admissible set for two independent dis-
counted future prices.

Reward 1

Reward 2

Scenario1

Scenario 2

1

1

Initial Price

(b) The case of wagers. If one reward is too
high, the other must be close to 1 so that the
(fixed) initial price (1, 1) lies inside the admis-
sible set.

Price 1

Price 2

Scenario 2

Admissible set

Scenario1

“Preference” 
condition

(c) The admissible set depends only on scenario 1,
but the “Preference condition” depends on Scenario
2. This shows that any initial price in the square
between both scenarios is compatible with arbitrage
and with the preference condition.It does not need
to be a convex combination of both prices.

Figure 1: Admissible sets for two market states
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Price 1

Price 2

Scenario 2

Scenario 1

Admissible set
Scenario 3

(a) No short selling

Price 1

Price 2

Scenario 2

Scenario 1

Admissible set
Scenario 3

(b) Short selling in Asset 2 but not in Asset 1.
The initial price of asset 2 must be a convex
combination of the discounted prices.

Price 1

Price 2

Scenario 2

Scenario 1

Admissible set
Scenario 3

(c) Short selling in every asset. In this case the
initial price should lie inside the convex hull
of the discounted future prices, recovering the
Fundamental Theorem.

Figure 2: Admissible sets for three market states
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